
A Look at the Effects of Handheld and Projected
Augmented-reality on a Collaborative Task

Eva Babette Mackamul
Centre for Interaction Design

Edinburgh Napier University, UK
evababette@gmail.com

Augusto Esteves
Centre for Interaction Design

Edinburgh Napier University, UK
a.esteves@napier.ac.uk

ABSTRACT
This paper presents a comparative study between two popular AR
systems during a collocated collaborative task. The goal of the study
is to start a body of knowledge that describes the effects of different
AR approaches in users’ experience and performance; i.e., to look
at AR not as a single entity with uniform characteristics. Pairs of
participants interacted with a game of Match Pairs in both handheld
and project AR conditions, and their engagement, preference, task
completion time, and number of game moves was recorded. Partici-
pants were also video-recorded during play for additional insights.
No significant differences were found between users’ self-reported
engagement, and 56.25% of participants described a preference for
the handheld experience. On the other hand, participants completed
the task significantly faster in the projected condition, despite hav-
ing performed more gamemoves (card flips). We conclude the paper
by discussing the effect of these two AR prototypes in participants’
communication strategies, and how to design handheld interfaces
that could elicit the benefits of projected AR.
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1 INTRODUCTION AND RELATEDWORK
Despite the seemingly over-night success of augmented reality (AR)
video-games (e.g., Pokemon Go1), AR systems have been the focus
1https://www.pokemongo.com/
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of HCI research for the past 50 years. Traditionally, AR systems add
a layer of digital information over the real world in real-time; and
they do so in three ways [2]. The first is through optical see-through,
in which digital information is displayed on a translucent head-
mounted display [32]. The second is through video see-through,
in which digital information and video from the real world are
combined and displayed in tandem. The resulting augmented world
can be consumed through either head-mounted [9] or hand-held
displays [34]. Finally, AR systems can also rely on a projector to
overlay digital information directly onto the physical world [22].

Recent developments in handheld devices and high definition
(HD) video capture have contributed to an increased availability
of AR technologies, especially the latter two approaches: hand-
held and projected AR. A common implementation of handheld
AR uses a directional approach to decide where to display infor-
mation, capturing the user’s position and viewpoint through GPS,
motion sensors, and/or a compass [3], or through object and surface
tracking [10] — all of these sensors are readily available in most
smart phones. On the other hand, projected AR systems tend to
rely on an optical approach when deciding where to display in-
formation: either through visual markers that, placed in areas of
interest, serve as anchors for digital information and controls [30];
or through computer vision techniques that estimate those areas of
interest [27]. Together with open-source optical solutions such as
the NyARToolkit2, a projected AR system can now be put together
for as little as $100 (HD projector and camera).

But despite their increasingly pervasive nature, few studies have
looked at the impact of different types of AR systems in the user ex-
perience, especially the effects of handheld and projected AR during
collocated collaboration. While exciting systems have been develop-
ment in this domain [1, 4, 11, 17, 29], comparative studies in the area
tend to contrast AR to other types of interactive systems. Examples
include comparative studies that describe how AR interfaces might
be better suited for collocated collaboration than generic computer
interfaces. This is because they are less likely to introduce artificial
seams between the real world and the shared digital task [15], and
thus more likely to enable natural communication between collab-
orators [7, 8, 33] — including non-verbal communication [5, 20].
Other examples describe how remote collaboration through AR
can increase users’ sense of presence when compared to a desktop
setup [6]; how users can achieve more effective collaborations in
AR than in similar VR counterparts [19]; and the positive effects
of AR in collocated collaborations in the classroom [35]. Finally,
Clergeaud et al. [12] discusses how users in different positions of
the mixed-reality continuum [23] can collaborate effectively.

2http://nyatla.jp/nyartoolkit/wp/
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Figure 1: Participants interactingwith the ARMatch Pairs game in both study conditions: handheld (left) and projected (right).

We contribute to this body of work by presenting a first compar-
ative study between two types of AR systems (handheld, projected)
in users’ experience and performance, during a collaborative, collo-
cated task between pairs of participants.

2 AUGMENTED-REALITY MATCH PAIRS
The collaborative task selected for this paper is based on the tradi-
tional memory game of Match Pairs. In this game, a single player
faces a N-sized grid of paired cards, which start facing down at
randoms positions in the grid. In each turn the player is allowed
to flip two cards - if these do not match, the player flips them back
down. The game ends when all cards are facing upwards, or when
the player runs out of time or turns. This game was selected due to
its simple rules and interaction, requiring very little practice time
from participants. To turn the game into a collaborative task, we
altered the rules so that the game is played by two players, each
responsible for flipping a single card each turn (players take turns
flipping the first card). Two versions of the game were developed
(see Figure 1), supporting handheld and projected AR.

The handheld AR version of the game was developed using
Unity3, and targets Android devices. AR functionality was sup-
ported through Vuforia4, which displayed the card game over a
single marker captured on the handheld devices’ camera. The game
state was synchronized between players/devices using Photon5,
and player input was captured as standard input touches on the
device’s display. The projected AR version of the game was devel-
oped using the Processing programming environment6, and runs
on a standard computer. Output was provided via top-down pro-
jection, and user input was captured via a webcam that looked
for colored-caps (red, green) placed on participants’ index fingers
(similar to [25]). Finger tracking was achieved through Processing’s
standard video library, which captures the RGB value for each pixel
in view. A card is flipped if: (1) the color of a pixel matches the
color of one of the two colored-caps used for selection (Euclidean
distance < 10); (2) this lasts for a short period of time (∼700ms); and
(3), the pixel is within the card’s boundaries.

3https://unity3d.com/
4https://unity3d.com/partners/vuforia
5https://www.photonengine.com/en/PUN
6https://processing.org/

Figure 2: A closer look at the AR interfaces for the handheld
(left) and projected (right) versions of the Match Pairs game.
Each animal is displayed as a 3Dmodel in the handheld con-
dition to match common implementations in this domain.

3 USER STUDY
To explore some of the effects of the two implementations of our
collaborative AR game, we conducted a study with eight pairs of
participants (9F), aged between 19 and 25 (M = 21.5, SD = 1.8). These
were paired with friends/acquaintances to facilitate communication.

3.1 Experimental Setup and Design
The experiment was conducted in a quiet room, following a within-
subjects design with two conditions: the handheld and projected
versions of our AR game. Participants in the handheld condition
interacted through a NVIDIA SHIELD K1, an 8" tablet. In the pro-
jected condition, a webcam (720p, 30Hz) and projector (1080p, 60Hz,
2000lm) were fixed 125cm above the game table (55x55cm). In both
conditions, participants faced a 4x4 grid of animal-themed cards,
which position was randomized at the start of the game. To adhere
to the aesthetics of common handheld AR experiences, each animal
is displayed as a 3D model in the handheld version of the game
(instead of simply printed on the card’s face) — see Figure 2.

3.2 Procedure and Metrics
Each session started with a brief explanation of the study, and by
capturing participants’ demographics. To minimize interference
during play, they were then instructed to sit at opposite sides of the
game table, and asked not to stand up while the game was taking
place (see Figure 1). At the start of each game (counter-balanced),
participants took a couple of minutes to familiarize themselves with
the input technology. Once the game was completed, they were
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asked to complete the User Engagement Scale short form (UES-
SF) [28], which measures self-reported user engagement. General
metrics such as game duration, number of card flips, and preference
were also captured. Finally, participants were video-recorded during
play for additional insights.

3.3 Results
The mean results for the UES-SF are presented in Table 1. This
includes the results from paired t-tests, which show no significant
differences between the two versions of the AR game in all four
engagement sub-scales. Table 2 presents the mean results for game
duration and number of card flips per game. These are significantly
different between our two implementations, with participants per-
forming more card flips, but finishing the game quicker in the
projected version of the game. The paired t-test for game duration
was completed after a single (positive) outlier was replaced by its
nearest neighbour (plus one unit). This corresponds to a pair of
participants that took 962s to complete the game in the handheld
condition (more on this in the video analysis subsection below).

Finally, nine participants reported a preference for the handheld
experience, describing it as easier to use, more intuitive, and more
familiar. Six participants reported preferring the projected game due
to its novelty, being more innovative, and because it made it easier
to communicate card positions to their partners. One participant
reported no preference between the two versions of the game.

3.3.1 Collaboration strategies. Informal video analysis allowed
us to extract different collaboration strategies employed by partic-
ipants during handheld play, where the lack of a shared display
made non-verbal communication harder (e.g., pointing at which
card the other player should flip to generate a match). We observed
four distinct strategies to communicate card positions to a partner.
In game-reference, participants would describe card positions in
relation to other cards already flipped, such as "the one above the
shark". In grid-reference, participants would code each card position
with a single number (1 to 16), or with a letter (columns) and num-
ber (rows). In player-reference, participants would describe card
positions in relation to themselves or their partner’s, such as "the
card in the row closest to you, (...) the second from the left". And fi-
nally, in space-reference, participants would describe card positions
in relation to the room itself, e.g., "the card (...) closest to the door".
These would often accompany a pointing gesture.

Participants were observed changing approaches during the
game, especially between player- and space-reference strategies.
More than once, participants had to be reminded to remain seated,
especially if these strategies were not enough to elicit the correct
response from their partners. One pair of participants never man-
aged to agree on a referencing strategy, and took more than twice
as long to complete the task than the average pair of participants.

4 DISCUSSION AND FUTUREWORK
We have selected and implemented our study conditions to reflect
arguably the two more commonly available AR systems today: a
mobile application in a portable, screen-based device; and a shared
projection often seen in museums and playgrounds. We do this
with the goal of better understanding the benefits and limitations
of each approach in the context of collocated collaboration — one

Table 1: Mean results for the User Engagement Scale short
form (UES-SF) on a 5-point Likert scale (higher is better), in-
cluding paired t-tests (df = 15). Standard dev. in brackets.

UES-SF Handheld Projected t, p
Focused attention (FA) 3.75 (0.66) 3.31 (0.70) -1.71, .107
Perceived usability (PU) 3.15 (1.17) 3.60 (0.77) 1.71, .107
Aesthetic appeal (AE) 3.83 (0.69) 3.71 (0.58) -0.88, .393
Reward factor (RW) 3.29 (1.00) 3.29 (0.70) 0, 1
Overall engagement 3.51 (0.64) 3.48 (0.36) -0.16, .878

Table 2: Mean results for game duration (in seconds) and
number of card flips, including paired t-tests (df = 7). Sig-
nificant differences in bold; standard deviation in brackets.

Handheld Projected t, p
Game duration 427.88 (233.47) 222.38 (44.40) -2.83, .025
Card flips 33.50 (10.47) 44.50 (9.05) 3.73, .007

of the most popular application areas for AR. Because these two
types of AR systems present very different constraints in terms of
development and deployment— one being deployed in users’ mobile
devices and requiring a motion sensor and camera [10]; the other
requiring a fixed setup with clear light-of-sight to the interaction
area — our insights are particularly useful to anyone looking to
adopt AR in shared, collaborative scenarios (e.g., classroom).

Our first finding is that participants’ self-reported engagement
did not vary significantly between conditions. This is despite both
prototypes having quite different means of interaction (e.g., per-
ceived usability), and presenting the game cards in 3D and 2D (e.g.,
aesthetic appeal). Likewise, preferences were evenly split between
the two conditions, with 56.25% of participants describing a prefer-
ence for the handheld experience. Interestingly, several participants
justified their choice by describing the handheld experience as more
intuitive and familiar, despite the projected condition being devel-
oped to resemble more closely a physical, real game of Match Pairs.
This not only speaks to the adoption of mobile AR, but reinforces
Hornecker et al.’s [14] critique of the idea that interaction directly
rooted on physical metaphors can automatically leverage users’
prior knowledge of interacting in the real-world. In sum, while
these initial results might suggest that the choice between hand-
held and projected AR has little impact in users’ experience during
collocated, collaborative tasks, participants’ performance results
suggests a more complex relationship.

Participants completed the task significantly faster in the pro-
jected condition, which can be explained by a system that provides
a better interface to the task, and/or better supports collaboration
between users. User feedback and UES-SF results, especially the
FA and PU sub-scales, suggests that participants did not consider
one interface to be particularly more usable than the other — if
anything, the handheld system was often described as more in-
tuitive and familiar. As such, we would argue that the handheld
condition had a negative effect on participants’ collaboration. On
one hand, the digital cards in the handheld prototype shared some
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of the properties of real, physical cards, such as supporting refer-
ence frames for communication [24] (as described in participants’
collaboration strategies). On the other hand, this seems to position
the handheld condition closer to a remote collaboration scenario,
where the use of spacial references is commonly observed in detri-
ment of embodied instructions (e.g., pointing) [26]. Not only that,
we suggest that the use of individual (and private) viewpoints, de-
scribed as key to collaborative AR [33], created a seam between
the task and communication spaces — similar to what is observed
during collocated collaboration through standard PCs [7]. This tells
us that the independence and individuality features of collaborative
AR described in [33] are task-dependent; arguably more suited for
tasks requiring visual search or spatial manipulation — this should
be explored in future work, including how these limitations are
shared with AR systems built for head-mounted displays.

Furthermore, participants performed significantly more actions
(card flips) in the projected condition, despite having completed the
task in a shorter time. One explanation for this is the use of card flips
as a form of epistemic action [13, 18]: actions performed to offload
some of users’ cognitive load onto the task itself. Kirsh et al. [18]
describes how expert Tetris players will look for an ideal location
for a piece by continuously rotating it on its way down, instead
of performing this rotation solely mentally. By performing quick
and numerous card flips, our participants were likely engaging in
a strategy described in [13] as artifact trial-and-error positioning,
which would reduce the task’s memory demands, but requires
a higher degree coordination better supported in the projected
condition. While previous work has broadly described how AR is
likely to lower cognitive load during collocated collaboration [5],
our results suggest that much work is needed to fully quantify the
impact of different AR systems in users’ epistemic strategies.

Finally, we would like to discuss how future handheld proto-
types could be implemented to improve collocated collaboration
in AR, especially to facilitate non-verbal communication between
collaborators. First, pointing at interface elements by pressing on
the display should highlight these to other users. This could also
be achieved passively through portable eye-trackers such as the
Tobii Pro X2-607 or the Pupil Pro [16]. Similar techniques have
been demonstrated to improve collaboration efficiency [19]. Sec-
ond, users should be able to momentarily share their viewpoints
with others. This could be done manually by, e.g., tagging the back
of each handheld device with a marker that would allow users to
peek into that viewpoint; or automatically, by, e.g., offering to show
the view of the user who’s speaking. This type of dynamic task
orientation should not only have a positive effect on user’s refer-
encing strategies [21], but similar approaches have been shown to
improve collaborative and social interaction [31].

5 CONCLUSION
This paper presented a comparative study between two popular
AR systems (handheld, projected), and discussed their effects on
users’ experience and performance during a collocated, collabo-
rative task. Our goal is to motivate a body of knowledge that de-
scribes the different affordances and benefits of different types of

7https://www.tobiipro.com/product-listing/tobii-pro-x2-60/

AR systems in this domain. This is especially important as AR sys-
tems have quite different development and interaction constraints,
ranging from a simple mobile application with minimal external
dependencies (with the exception of the occasional paper marker);
to head-mounted displays equipped with hand-tracking or voice-
recognition; to projection systems that require a fixed setup and
are harder to scale. The next steps for this work should look at
quantifying collaboration in different types of tasks (e.g., tasks re-
quiring spatial manipulation such as a jigsaw puzzle), and different
types of input systems. These would include tangible AR systems
where users interact not by tapping, but by manipulating real ob-
jects (e.g., Match Pairs with physical cards); or AR systems built for
head-mounted displays.
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